ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration BerryAlle

Programme holder Institut Bauen und Umwelt e.V. (IBL

Publisher Institut Bauen und Umwelt e.V. (IBU

Declaration number EPD-BAC-20150179-CBA1-EN

Valid to 17.11.2015

BerryAlloc

High Pressure Laminate Floor Covering (HPL floor covering)

BerryAlloc

www.bau-umwelt.com / https://epd-online.com

General Information

BerryAlloc

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin

Germany

Declaration number

EPD-BAC-20150179-CBA1-EN

This Declaration is based on the Product Category Rules:

Floor coverings, 07.2014 (PCR tested and approved by the SVR)

Issue date

17.11.2015

Valid to

16.11.2021

Wiremanes

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr. Burkhart Lehmann

BerryAlloc HPL

Owner of the Declaration

Alloc AS Fibovegen 26 NO-4580 Lyngdal

Declared product / Declared unit

1 m^2 high pressure laminate floor covering (9mm, 8.7 kg/m^2)

Scope:

This Environmental Product Declaration refers to 1m² HPL floor covering with a thickness of 9mm and grammage of 8.7 kg/m². The production site is located in Lyngdal, Norway.

The data is based on production during 2013. In order to enable the user of this EPD to calculate the LCA results for a HPL floor covering with a thickness of 10.3mm this EPD contains the respective calculation rules. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration according to /ISO 14025/

internally

externally

Clirle OHE Ne

Mr Carl-Otto Neven (Independent verifier appointed by SVR)

Product

Product description

(Managing Director IBU)

BerryAlloc HPL flooring is a durable High Tech laminate floor covering performing according to the product standard /EN 13329/ and /Regulation (EU) No 305/2011/, taking into consideration /EN 14041/. The complete manufacturing process is located in Lyngdal, Norway.

The surface consists of several paper layers. The top layer has a transparent wear resistant surface above a decorative paper. The body of the top layer is made of craftpaper(s) with a more flexible performance. The core consists of a high density fiberboard (HDF). The backing layer consists of a balancing paper.

The declared product has a thickness of 9mm. In order to enable the user of this EPD to calculate the LCA results for a HPL floor covering with a thickness of 10.3mm this EPD contains the respective calculation rules.

Application

The HPL floor covering described in this EPD is intended to be used within a building, for the classes 21-23 and 31-34 described in the accompanying descriptions, according to /EN 13 329/ and /ISO 10 874/.

Technical Data

Constructional data

Name	Value	Unit
Product thickness (thickness of the element) /EN 13 329/	9 - 10.3	mm
Grammage	8700	g/m²
Abrasion Class AC /EN 13 329/	AC5 to AC6	-
Product Form	Panel	-
Length of the surface layer /EN 13 329/	1200 - 2410	mm
Width of the surface layer /EN 13 329/	190 - 245	mm
Density /EN 323/	930 - 1030	kg/m³
Layer thickness (Top layer) /EN 324-1/	0.6	mm

For detailed technical data: Technical datasheet for each individual product are available.

Base materials / Ancillary materials

The composition of a HPL floor covering in mass % is:

- 81% High Density Fibre board (HDF)
- 9 % paper

- 6 % resin
- 4% aluminium (locking system)
- <1 % corundum</p>

HDF (high density fibreboard)

The core board is an HDF board composed of wood fibres and a thermosetting resin, mainly MUF (melamine-urea-formaldehyde) resin.

Paper

The renewable resource wood is the main raw material for paper production.

Resins

The used amino resins are melamineureaformaldehyde and phenol resins. Amino resins are thermosetting resins that are cured using heat and pressure.

Aluminium

Mechanical locking system that allows planks to be precisely aligned and joined without using glue or special tools.

Corundum

Bauxite is the mineral resource of corundum. By using aluminiumoxide (Al2O3) the surface layer of a laminate flooring obtains abrasion and wear resistance. HPL floor coverings do not contain substances that are listed in the "Candidate List of Substances of Very High Concern for Authorisation" /REACH/.

Reference service life

The estimated service life of a floor covering depends e.g. on the type of floor covering and the area of application, the user himself and the maintenance of the product. Comparisons of different floor coverings are only allowed, if these parameters are considered in a consistent way.

According to /BBSR/ a reference service life of 20 years can be assumed for laminate floor coverings. Technical service life can be considerably longer. 20 years is the minimum reference service life for Alloc's floor coverings. For residential use Alloc offers warranty for lifetime > 20 years (www.berryalloc.com). The use stage is declared in this EPD for a one year usage.

Factors for different thicknesses

The LCA results for the HPL floor covering declared in this EPD refer to a laminate flooring with a thickness of 9 mm, which meets the requirements of the use classes: 33-34 according to /EN 13329 and EN ISO 10874/. In order to enable the user of the EPD to

calculate the results for a thickness of 10.3mm and the use classes 33-34 the factors in the following table can be used for the calculation. For A1-A3, A4, A5, B2 and D the LCA results of the declared product (thickness 9 mm) have to be multiplied with these factors.

Factors to calculate the results for module **A1-A3** for a 10.3 mm HPL

flooring:

Parameter	Factor for A1-A3
GWP	1,46
ODP	1,06
AP	1,11
EP	1,10
POCP	1,11
ADPE	1,06
ADPF	1,12
PERT	1,14
PENRT	1,12

Factors to calculate the results for modules $\bf A4,\,A5$ and $\bf B2$ for a 10.3 mm HPL

flooring:

Factors valid for all parameters										
A4	A5	B2								
1,14	1,0	1,0								

Factors to calculate the results for **module D** for a 10.3 mm HPL flooring:

Parameter	Factor for A1-A3
GWP	1,16
ODP	1,15
AP	1,14
EP	0,99
POCP	1,17
ADPE	1,15
ADPF	1,15
PERT	1,15
PENRT	1,15

LCA: Calculation rules

Declared Unit

The functional unit is 1m² laminate flooring (8.74 kg/m², thickness 9 mm).

Declared unit

Name	Value	Unit
Declared unit	1	m ²
Conversion factor to 1 kg	0.114	-

System boundary

Type of EPD: cradle-to-gate - with options

Modules A1-A3 include processes that provide materials and energy input for the system,

manufacturing and transport processes up to the factory gate, as well as waste processing.

Module A4 includes the transport to the point of installation.

Module A5 includes packaging waste processing during the construction process. A waste treatment in a waste incineration plant is assumed. Credits from energy substitution are declared in module D.

Module B2 includes the cleaning of the floor covering. Provision of water, cleaning agent and electricity for the cleaning of the floor covering is considered, incl. waste water treatment. The LCA results in this EPD

are declared for a one year usage.

Module C is not applicable, because the HPL floor coverings reach the end-of-waste state after dismantling from the building.

Module D includes benefits from all net flows in the end-of-life stage that leave the product boundary system after having passed the end-of-waste stage. It is assumed that post-consumer HPL floor covering waste reaches the end-of-waste stage and is 100% incinerated in an European biomass power plant. Module D contains the loads (from incineration process) and benefits (from energy substitution)

beyond the system boundaries including the biogenic CO2 incorporated in the wood fraction of the HPL flooring. The incorporated CO2 in the wood fraction is approx. 11 kg/m². The value declared in module D is the sum of: - 5.86 kg CO2 equiv. + 11 kg CO2 biogenic = 5.14 kg CO2 equiv.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment.

Transport to the construction site (A4)

Name	Value	Unit
Litres of fuel (consumption per kg)	0.00159	l/100km
Transport distance	250	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	-	kg/m³

For the calculation of a transport distance to a specific point of installation the declared value for 250 km should be multiplied accordingly.

Installation in the building (A5)

Name	Value	Unit
Output substances following	0.518	ka
waste treatment on site		kg

The amount of installation waste varies and is not declared in this EPD. For the calculation of the environmental impact of 1m² laminate flooring including a certain amount of installation waste the values for the production stage (A1-A3), delivery (A4) and end-of-life (D) have to be multiplied with the amount of waste (e.g. 3% installation waste, factor 1.03).

Maintenance (B2)

Name	Value	Unit
Maintenance cycle (cleaning	120	Number/R
frequency per year)	120	SL
Water consumption	0.0068	m ³
Auxiliary	0.0507	kg
Electricity consumption	0.074	kWh

The common cleaning method for laminate floor coverings is damp mopping. Loose dirt should be removed by means of a dry mop or a vacuum cleaner. In case of higher requirements on hygiene (e.g. hospitals, care homes) or strongly frequented areas (shops) a need of a higher cleaning frequency is possible.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

100% of post-consumer waste (8.74 kg) is incinerated in a biomass power plant (R1-value >0.6).

LCA: Results

The results for module B2 refer to a period of one year.

The module D contains the loads and benefits beyond the system boundaries including the biogenic CO2 incorporated in the wood fraction of the HPL flooring. The incorporated CO2 in the wood fraction is approx. 11 kg/m². The value declared in module D is the sum of: -5.86 kg CO2 equiv. + 11 kg CO2 biogenic = 5.14 kg CO2 equiv.

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit	CLARED)	ΓDE	E NO	ULE	MOD	IND =	CA; N	N L	DED IN	CLI	X = IN	ARY	OUND	ГЕМ В	SYST	F THE	ION O	RIPT	DESC						
RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit A1-A3 A4 A5 B2 Closely opening of proper period of proper period cornel alore in School potential of proper period cornel alore in School potential of proper period cornel alore in School potential of proper period cornel period proper period cornel period potential of Residual properties of the School potential of Proper period cornel period proper period period proper period per		BENEFITS AN																							
STAGE STAG	LOADS BEYOND THE	LOADS FND OF LIFE STAGE REYOND T							USE STAGE								DPODLICT STAGE								
RESULTS OF THE LCA - ENVIRONMENTAL MPACT: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Main potential of land and water Rig (PC)²-Eq. 3.40E-9 4.50E-13 2.81E-12 2.97E-11 4.40E-14 4.60E-44 4.6	SYSTEM		END OF LIFE STAGE						USE STAGE							<u>- </u>			PRODUCT STAGE						
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4	OUNDARIES												302												
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4			20	5		_	_	_	_	0		g	_						е						
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4			<u> </u>	9 .		tior	/at]e	Ž.	_		e e			n tl	ng	ب ا	<u>a</u>						
A1	Reuse- Recovery- Recycling- potential	sal	ű	8	ŏ	Tiol	≥ ~	.	<u> </u>	8	l e	٠ <u>≒</u>	an		ld (ld	e :	Ę	Joc	ter ≥						
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 X X X X X X MND X MNR MNR MNR MND MN	Reuse- Recovery Recycling potential	8	5		l sa	ıstı	suc Tse	מַן	na Se	ان	ë	ede	en) se	eш	+ =	ac	JSU	ma pp						
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 X X X X X X MND X MNR MNR MNR MND MN	Rec Re	<u>:</u>	ט	2	<u> </u>	Sor	c	۱ ا	읉 -	F	ä	ď	ain 1		SS	g g	Ē	<u>.</u>	N S						
A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 X X X X X X MND X MNR MNR MNR MND MN	IE IE –	_	מ	6		d d	Jec		ers	ja d	Se		ığ		₹.	ans	Aa	_	Ra						
X			>	}			5		g	12						<u> </u>									
RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter	D	C4	3	С	C2	C1	В7		В6	В	B4	В3	B2	B1	A5	A4	А3	A2	A1						
Parameter	Х	IND	ND	1M	MND	MND	MND	5	R MNE	MN	MNR	MNR	Х	MND	Х	Х	Х	Х	Х						
Parameter		a/m²	3.74	m. 8	a (9mr	verin	or co	flo	² HPL	: 1	IPACT	AL IN	MENT	VIRON	\ - EN'	E LCA	OF TH	JLTS	RESU						
Depletion potential of the stratospheric ozone layer [kg CFC11-Eq.] 3.40E-9 4.50E-13 2.81E-12 2.97E-11 4 Acidification potential of land and water [kg SO ₂ -Eq.] 3.57E-2 4.88E-4 1.02E-4 4.06E-4 -6 Eutrophication potential [kg (PO ₄) ³ - Eq.] 8.66E-3 1.24E-4 1.54E-5 1.24E-4 4 Formation potential of tropospheric ozone photochemical oxidants Abiotic depletion potential for non-fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 1 Abiotic depletion potential for fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 1 Abiotic depletion potential for fossil resources [kg Sb Eq.] 1.41E+2 1.51E+0 1.59E-1 2.12E+0 -1 RESULTS OF THE LCA - RESOURCE USE: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit A1-A3 A4 A5 B2 Renewable primary energy as energy carrier [kJ] 7.73E+1 IND IND IND Renewable primary energy resources as material utilization [kJ] 1.99E+2 IND IND IND Total use of renewable primary energy resources [kJ] 1.17E+2 IND IND IND Non-renewable primary energy as material utilization [kJ] 1.17E+2 IND IND IND Non-renewable primary energy as material utilization [kJ] 3.70E+1 IND IND IND Total use of non-renewable primary energy resources [kJ] 1.54E+2 1.51E+0 1.88E-1 2.44E+0 -1. Use of secondary material [kg] 0.00E+0 0.0	D	<u> </u>																							
Depletion potential of the stratospheric ozone layer [kg CFC11-Eq.] 3.40E-9 4.50E-13 2.81E-12 2.97E-11 4 Acidification potential of land and water [kg SO ₂ -Eq.] 3.57E-2 4.88E-4 1.02E-4 4.06E-4 -6 Eutrophication potential [kg (PO ₄) ³ - Eq.] 8.66E-3 1.24E-4 1.54E-5 1.24E-4 4 Formation potential of tropospheric ozone photochemical oxidants Abiotic depletion potential for non-fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 1 Abiotic depletion potential for fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 1 Abiotic depletion potential for fossil resources [kg Sb Eq.] 1.41E+2 1.51E+0 1.59E-1 2.12E+0 -1 RESULTS OF THE LCA - RESOURCE USE: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit A1-A3 A4 A5 B2 Renewable primary energy as energy carrier [kJ] 7.73E+1 IND IND IND Renewable primary energy resources as material utilization [kJ] 1.99E+2 IND IND IND Total use of renewable primary energy resources [kJ] 1.17E+2 IND IND IND Non-renewable primary energy as material utilization [kJ] 1.17E+2 IND IND IND Non-renewable primary energy as material utilization [kJ] 3.70E+1 IND IND IND Total use of non-renewable primary energy resources [kJ] 1.54E+2 1.51E+0 1.88E-1 2.44E+0 -1. Use of secondary material [kg] 0.00E+0 0.0	5.14E+0	5E-1	1	-1	9F-1 7.46F-1)	-1.64E+0	1.1	a CO2-E	П		ial	na potent	oal warmir	Glob								
Eutrophication potential [kg (PO ₄)³-Eq.] 8.66E-3 1.24E-4 1.54E-5 1.24E-4 4.65 Formation potential of tropospheric ozone photochemical oxidants [kg Ethen Eq.] 4.07E-3 -1.63E-4 7.71E-6 7.15E-5 6 Abiotic depletion potential for non-fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 -1 Abiotic depletion potential for fossil resources [MJ] 1.41E+2 1.51E+0 1.59E-1 2.12E+0 -1 RESULTS OF THE LCA - RESOURCE USE: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit A1-A3 A4 A5 B2 Renewable primary energy as energy carrier [MJ] 7.73E+1 IND	-4.21E-9	'E-11	2	12	2.81E-	E-13	4.50E)	3.40E-9	q.]	CFC11-	[kç	layer	ric ozone	tratosphe	al of the st	n potenti								
Formation potential of tropospheric ozone photochemical oxidants Rig Ethen Eq. 4.07E-3	-6.13E-3																	Ad							
Abiotic depletion potential for non-fossil resources [kg Sb Eq.] 2.80E-6 4.30E-9 1.34E-8 5.79E-8 -1 Abiotic depletion potential for fossil resources [MJ] 1.41E+2 1.51E+0 1.59E-1 2.12E+0 -1 RESULTS OF THE LCA - RESOURCE USE: 1 m² HPL floor covering (9mm, 8.74 kg/m²) Parameter Unit A1-A3 A4 A5 B2 Renewable primary energy as energy carrier [MJ] 7.73E+1 IND	-4.96E-5 6.56E-4																nical ovida					ion note:	Format		
Abiotic depletion potential for fossil resources [MJ] 1.41E+2 1.51E+0 1.59E-1 2.12E+0 -1	-1.11E-6																								Toma
Parameter Unit A1-A3 A4 A5 B2 Renewable primary energy as energy carrier [MJ] 7.73E+1 IND IND IND Renewable primary energy resources as material utilization [MJ] 1.09E+2 IND IND IND Total use of renewable primary energy resources [MJ] 1.86E+2 8.45E-2 1.89E-2 4.08E-1 -2. Non-renewable primary energy as energy carrier [MJ] 1.17E+2 IND IND IND Non-renewable primary energy as material utilization [MJ] 3.70E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 1.54E+2 1.51E+0 1.88E-1 2.44E+0 -1. Use of secondary material [kg] 0.00E+0	-1.20E+2	2E+0	.59E-1 2.12E										[MJ]												
Renewable primary energy as energy carrier [MJ] 7.73E+1 IND IN				m²)	74 kg/	nm, 8.	g (9n	m ² HPL floor covering (9r			E: 1 r	SULTS OF THE LCA - RESOURCE USE: 1													
Renewable primary energy resources as material utilization MJ 1.09E+2 IND IND IND IND Total use of renewable primary energy resources MJ 1.86E+2 8.45E-2 1.89E-2 4.08E-1 -2. Non-renewable primary energy as energy carrier MJ 1.17E+2 IND	D	2			A5		A4		- A 3	,	Unit				neter	Parar									
Total use of renewable primary energy resources [MJ] 1.86E+2 8.45E-2 1.89E-2 4.08E-1 -2.	IND												rrier	energy ca	nergy as e	orimary en	newable p	Rer							
Non-renewable primary energy as energy carrier [MJ] 1.17E+2 IND IND IND IND Non-renewable primary energy as material utilization [MJ] 3.70E+1 IND IND IND IND IND Total use of non-renewable primary energy resources [MJ] 1.54E+2 1.51E+0 1.88E-1 2.44E+0 -1.	IND -2.12E+1			-								n							Re						
Non-renewable primary energy as material utilization [MJ] 3.70E+1 IND IND IND Total use of non-renewable primary energy resources [MJ] 1.54E+2 1.51E+0 1.88E-1 2.44E+0 -1.	-2.12E+1 IND			\dashv																					
Use of secondary material [kg] 0.00E+0	IND)					IND	70E+1		3.			tilization	naterial u	nergy as r	orimary er	newable p								
Use of renewable secondary fuels [MJ] 0.00E+0 0	-1.58E+2			_									nergy resources		primary	enewable	Total use of non-								
Use of non-renewable secondary fuels [MJ] 0.00E+0 <	0.00E+0 0.00E+0			\dashv				_										-							
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES:	0.00E+0			1																					
	-3.10E-2	E-4	Use of net fresh water [m³] 6.29E-2 1.48E-4 1.81E-3 9.39E-4																						
1 m² HPL floor covering (9mm, 8.74 kg/m²)							RIES:	GO	CATE	STE	D WA														
												l ²)	4 kg/m	m, 8.7	g (9m	overin	loor c	HPL f	1 m ²						
Parameter Unit A1-A3 A4 A5 B2	D	2			A5		A4		- A 3	,	Unit				neter	Parar									
191 11111 11111	-5.53E-5																								
	1.60E-2			+									Non-hazardous waste disposed					<u> </u>							
	-1.51E-2 0.00E+0			+									Radioactive waste disposed					<u> </u>							
	0.00E+0 0.00E+0			+									Components for re-use												
	0.00E+0			\dashv																					
	4.15E+1			\dashv																					
	4.97E+1	E+0	0.0		2.36E+0) :	0.00E+0		0E+0	0.															

References

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

PCR Part B

Institut Bauen und Umwelt e.V.: Requirements on the

EPD for floor coverings

EN 323

EN 323: 1993: Wood-based panels; determination of density

EN 324-1

EN 324-1: 1993: Wood-based panels; determination of dimensions of boards; part 1: determination of thickness, width and length

EN 13329

Laminate floor coverings - Elements with a surface layer based on aminoplastic thermosetting resins - Specifications, requirements and test methods

EN ISO 10874

Resilient, textile and laminate floor coverings - Classification (ISO 10874:2009)

EN 14041

EN 14041:2004: Resilient, textile and laminate floor coverings - Essential characteristics

BBSR

Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR): Nutzungsdauer von Bauteilen für Lebenszyklusanalyse nach Bewertungssystem Nachhaltiges Bauen (BNB), 2011

GaBi Software

GaBi 6 dataset documentation for the software-system and databases, LBP, University of Stuttgart and PE INTERNATIONAL AG, Leinfelden-Echterdingen, 2014 (http://documentation.gabi-software.com/)

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration,

Evaluation. Authorisation and Restriction of Chemicals

Regulation (EU) No. 305/2011

Regulation (EU) No. 305/2011 of the European Parliament and of the Council of 9 March 2011

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr. 1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Germany | Web | www.bau-umwelt.com

Programme holder

thinkstep

Author of the Life Cycle Assessment

 thinkstep AG
 Tel
 +49 711 3418170

 Hauptstraße 111 - 113
 Fax
 +49 711 34181725

 70771 Leinfelden-Echterdingen
 Mail
 info@thinkstep.com

 Germany
 Web
 www.thinkstep.com

Owner of the Declaration

 BerryAlloc
 Tel
 +47 38 34 22 00

 Fiboveien 26
 Fax
 +47 38 34 37 44

 4580 Lyngdal
 Mail
 info@berryalloc.com

 Norway
 Web
 www.berryalloc.com